1. Play the "I'm guessing an integer between 1 and 100" game with a friend or parent. You think of a secret number and ask the other person to guess the number. Tell the player whether each guess is "too high" or "too low". Record the player's guesses with their signature on the back of this paper. After they've guessed the number, tell them that they played the game well if they guessed the number correctly within 7 guesses. Explain the binary search algorithm to them and stress that it is much faster than doing a sequential search (e.g. Is your secret number 1 ?...No...Is your secret number 2 ?.....No.....Is your secret number 3?....No...etc.) which would take 99 guesses in the worst-case scenario.

Answer the following exercises by tracing the variables and printing the displayed output. For this worksheet, ignore the fact that VB follows Banker's Rounding (e.g. assume that 4.5 rounds to 5 even though it would round down to 4 due to Banker's Rounding).

```
Dim scores() As Integer = {5, 13, 29, 31, 44, 53, 66, 75, 87, 99}
Dim low As Integer = 0
Dim high As Integer = scores.Length() - 1 loy found low high mid
Dim key As Integer = 44
Dim mid As Integer = high / 2
Dim found As Boolean = False
While (Not (found) And low <= high)
    If (scores(mid) = key) Then
    found = True
    Else
        If (scores(mid) > key) Then
        high = mid - 1
        ElseIf (scores(mid) < key) Then
            low = mid + 1
        End If
```

 mid \(=\) Math.Round((low + high) / 2)
 End If
 show output here:

End While
If (found = True) Then
lblResult.Text = "Found in position " + Str(mid)
Else
lblResult.Text = "Not Found"
End If
2. Trace the code again with key $=45---\cdots---\cdots-\cdots \frac{\text { key }}{45}$ found low high mid
show output here:
\square
3. Trace the code again with key $=99-\cdots-\cdots \frac{\text { key }}{99}$ found low high mid
show output here:
\square

